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ABSTRACT

In this paper, minimization problems in L (R3) are considered. These

problems arise in astrophysics for the determination of equilibrium con-

figurations of axially symmetric rotating fluids (rotating stars). Under

nearly optimal assumptions a minimizer is proved to exist by a direct

variational method, which uses heavily the symmetry of the problem in order

to get some compactness. Finally, by looking directly at the Euler equation,

we give some existence results (of solutions of the Euler equation) even if

the infimum is not finite.
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SIGNIFICANCE AND EXPLANATION

The determination of equilibrium configurations of axially symmetric

rotating fluids (rotating stars) reduces to the following variational

problem: one has to mizuimize a functional (called the energy) depending on

the density of the fluid subject to the constraint that the total mass is

prescribed. This problem is thus a minimization problem in L (IR 3) which,

together with the fact that the domain ( 3) is unbounded, creates diffi-

culties (lack of compactness) which are overcome by new compactness results

using heavily the axial symmetry of the problem. An application of this

method is given concerning other minimization problems in L1 arising in

Thomas-Fermi theory in Quantum Mechanics. Finally, looking directly at the

Euler equation associated with the minimization problem, we obtain solutions

(of the Euler equation) even if the infimum (of the energy) is not finite.

I

The responsibility for the wording and views expressed in this descriptive
stmary lies with MRC, and not with the author of this report.
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MINIMIZATION PROBLEMS IN L'(R3)

P.L1 LIONS

I - INTRODUCTION

We study in this paper a class of minimization problems of the

following type : find p in L (gR3) minimizing

(1) inf {f 3 j(p(x))dx + f 3V(x)p(x)dx - - 3x 3 - dxdy}
p>o xy

f 3 p(x)dxM

where j is some given positive convex function, V is a given axially

symmetric function and where M is a prescribed positive constant.

Problems of this type arise in many situations : in celestial

mechanics, as a model to study the geometry of stars and planets (see

[ 18 1, [ 24 1, [34 1 * [38 1 or [26 1 for the classical theory concerniug

these problems and their origins) ; or in quantum mechanics as Thomas-

Fermi type problems. Some particular solutions may be found in [26 1.

133 1, and [39 1, but the first general results are given in [6 [4 1

and [5 1 (see also (7 1 for a physical interpretation, and [17 1, [19 ],

(20 1, [ 21 ] for qualitative properties of the solutions).

The variational method given in [6 1 to solve (1) is to solve first

an approximate problem : find PR in WR - {p C LIOR3)9

0 < p R, fp- M, p= 0 iniR3 - {W [<R}}such that m(PR) = min S(P).
WR
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Then one has to obtain estimates on P R : namely to prove there

exists R such that for R > R°  PR G WR  . And finally this

provides a solution of (I). This somewhat complicated and undirect

method is used in order to avoid the difficulty due to the term

IfJ (3)(y) dxdyR 3 x R 3 1l=-yl

in the functional.

Indeed if all other terms are " lower semi-continuous " (in a

vague sense) this term is concave in p and thus there seems to be

a difficulty to pass to the limit on a minimizing sequence.

We present here a method to pass to the limit in this term

(which is related to minimization techniques introduced in [10 1.

[ I ], [ 12 1 or 129 1) and therefore we give a direct (and simple)

minimization approach to (I). This enables us to generalize the

results of [6 1, [4 ] and to treat problems like (I), arising in

Thomas-Fermi theory. This method is based on new compactness results

using heavily the axial symmetry of the problem. In addition, this

method works in some situations for which it is not clear that the

method of (6] may be applied (since it is not clear that the solutions

we find have compact support).

In section II, we give our main results concerning (I) (the

compressible case for axisymmetric rotating fluids) ; while in section

III we apply our techniques to the incompressible case. In section IV

we study some variational problems of Thomas-Fermi type. Finally in

section V, we look directly at the E£'er equations associated with (1).

Let us conclude this introduction remarking that another class of

minimization problems is treated in [28 1 , [8 1 and [ 15 1 the main

difference between these problems is in the presence of
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+ i p(x)p(y) lwy1'Idxdy instead of - p(x)p(y) fx-Idxdy

This difference also makes the Euler equations simpler in the case

of [8 ] since these equations (even nonlinear) satisfy the maimm

principle (see [ 8]).

The author wishes to thank H. Berestycki, H. Brezis and A. Fried-

man for helpful conversations.

II - AXISYMMETRIC ROTATING FLUIDS THE COMPRESSIBLE CASE

II. 1. Angular velocity prescribed :

Let us give a few nctations : D(&) - {p E L' n L6/5(R'),j(IP1)6 L'(00)1;

&(p) - f j(p)dx+ J V(x)P(x)dx- I ff O(x)p(y) dxdy

for p in D(&) , where we assume

(2) j is a nonnegative continuous convex function on IR+ such that

j(o) - 0

(3) V 6 L°(°R3 ) and V(x) = V((V/;' + x!,O,O)) for all x - (Xlx 2 ,x 3 ) ;

(this last assunrition means that V depends only in r if we use

cylindrical coordinates x - (r,e,z)).

Remark I.1. From well-known results we have for all P in L6 / 5

(4) i1 4 *f2E2.DZ2. dxdyl < C l 116/
3 -7 0 L6/5

(if p E L6 / 5  P ( dy E L6 )

c 1/2
Furthermore an easy argument gives (-2) - C where C is the best

constant in the following Sobolev inequality

II u II < C II uII , for all u in K I 0R3 ) 

L6 (R) L2 (3)

-3-



'Now, in view of [35 1, [3 or [371, c . -)-1/3 ; thus we have

(5) - 1/3 1
(5)C E) Xi

In conclusion for p in L6 / 5 , the following fumctional E is well

defined

E(p) - JJSa 3  dxdy

and E(P) is bounded as in (4) (where C is given by (5)).
0

In addition, we have by 1llder inequality, for all p in

L! n L4/ 3 :

(55 ffR 3 X R 3 P(x)p(y)lx-yl-ldxdyl < C1 li 112/3 p 1 4 / 3

and let CI be the best constant satisfying (5') for all p in L' n L4/3 .

Now , we give our main result

THEOREM 1. Let M > 0 be fixed. We assume (2), (3) andzi tC.2/3
(6) t.. . -K> 0 ,with -_- <K -a

t -+ CO

(7) &(P) < 0 , for some p in D(&) such that P > 0 <, M

(8) V > 0 a.e. in .R3

Then, there exists p in D(&) such that p > 0 , fIR 3 " M

P depends only of r and z, p is even and is nonincreasing in z

and & (p) fmn a 8 (P) min &(p) < 0

r ) M pE ( P 4

where D(&) - D(&) () {P - P(r,z) with x - (r,,z)}

Pemark 11.2. This result contains the corresponding result of [ 6 1

where some extra assumptions are made upon j . Let us also remark that

in (6 1 (and this is the physical problem) V is replaced by -V where

V satisfies (3) and

-4-



(9) V is nondecreasing in r - (x2+X2)112, > o a.e.

lim rIV(r)- sup VI -0.

Thus if we set V sup V - , we haver,0

min j(p) f P+I -E(P) min (p) -M sup "
fp2 fM lb M r >0

And by this simple observation, we see that the physical problem

is included in our general framework.

We will see below (in Corollary I.1) some sufficient conditions

for (7) to hold. Let us also point out that regularity results are

proved in [6 ] and can be easily adapted to the situation treated here.

4 (~2K) 3/2
Remark 11.3. The fact that - is critical power and M G-)3 o C I

is a critical mass is proved in [ 6 ] . Indeed, if we consider j(t) - at

with 0 < a , 0 < 0 < i then a straightforward argument shows that

mi J j(p) E(P) =--
f'o - M

p)O0

and this implies :m &() -

fp- M

pro0

We will come back on thi point later on (in Section V).

Remark II.4. The case of other potentials V (i.e. not satisfying (3)

and (8)) is considered in Remark 11.7.
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COROLLARY 11. 1. Under asazoptions (2), (3), (6) and (8) and if

we assume either

lim j(t)t-4/3 . 0
t -0

(10)
lim rV(r) - 0

or Lmjt) t - 4 13 M0
t4-. 00

M > t>t0), for acme oonstant M' large enough,I oH>
00

then (7) is satisfied and thus the concZueion of Theorem II. 2 holds.

Proof of Corollary II.l. If we assume (10), (7) follows from

Lemma 6 in [ 6 ] : we reproduce the proof .

We choose a such that f a - M , a C X+ (R3 ) and a - 0

I 1 x() adw
if I xi > I or if r 1 . Next, we consider a 1 - a(1) andwe

compute

i(Oc)dx - ) a4/ 3  o() (as R+

r 3R

J V(r)R(x)dx 3 V(Rr)a(x)dx < V(Rr)a(x)dx - )o(l)

2 <r "I

on the other hand

f f aR(X)R( dxdy 1 a(x)(y) dxdy

jr-yj dx-yj

And this implies that for R large enough we have &(CR) < 0

If we assume (11), we now choose a such that f -I

o E (R +R 3) . If we denote by aR() - a(d) , we have

-6-



j J(OR)(x) dx - j(a dx

f V(r)aR(x)dx - R' J V(Rr)a(x)dx < CR
Jf cR (x)R(Y) dxdy R5  a(x)a(y dxdy

I x-yI
Thus, if R > R , we have &(a R) < 0 , on the other hand we have0

CaR dx - R ;

And choosing M - R3 , we conclude

O 0

We would like to point out that, in the case where we assume (10),

then by [6 ] all solutions p of the minimization problem have compact

support (it is, by the way, a necessary condition for the method of [6 ]

to be applied). Under the general assumptions of Theorem II.1 , we do

not know (in general) that all solutions P have compact support.

11.2. Proof of Theorem II.1

Let us give the outline of the proof : we first want to solve

(12) &(p) - min {&(p) ; f p <H, p ) 0 p E &

f < M

E: D(&)

(Remark that the minimizing set is convex and & + E is convex). Thus

considering a minimizing sequence pn we obtain first 1) bounds on

Pn ; next 2) we choose a " good " minimizing sequence and 3) we pass

to the limit and find a solution P of (12).

When this is done, we have to prove in a fourth step 4) that we

have actually f p - M . This will be achieved in this section by a

simple scaling argument.

-7-



Remark 11.5. This scheie of proof is somewhat standard in minimi-

zation problems and for related problems and techniques the reader

is referred to [ II ], [ 12 1, [29 ] for example. Here, the difficulty

is essentially concentrated in steps 3) and 4).

Step 1) Let pn be a minimizing sequence, that is , such that

Pn > , pn e D(&) , f p M and &(p) 4 1> -

where I inf &()

Because of (7), I < 0 and we may assume &( n ) & - A < 0

In view of (6) and (8), we have : for any C > 0 , there exists

C > 0 such that
(p)>(K-e) C1 M 2/3

(indeed , j(t) > (K-e)t 4 /3 - Ct).

And because of (6), we conclude for any minimizing sequence pn we

have

(13) lp IIL4/3 < Const. ; j(p n ) < cont. ; f V(x)pn(x)dx < Const.

In particular this proves that I > - .

Step_) Let pn  be a minimizing sequence, we introduce

On = On

where P denotes the Steiner synnetrisation of P with respect to

the plane x3 0



We recall (see [14 ]) that, because of the properties of the Steiner

symmetrisation, we have

f J(Pn) - f J(0n)

(since pn  and pn have the same distribution function)

f V(r)P = f V(r)p (remark that p (r,z) and pn(r,z) for any r

have the same distribution function in z)

E(p) ) E(p)

This implies &(pn) < &(p.)

Thus, we may assume that the ninimizing sequence pn satisfies

(14) Pn Pn

(if not, take n = pn ) , that is, pn  is axially symmetric, even and

nonincreasing in z

Step 3) Let pn  be a minimizing sequence satisfying (14) : by step 1)

On  satisfies (13). In addition, if we introduce

un(x) = Pn(y) II-dy
3 12

we have easily : Vu is bounded in Lq (jR3 ) for < q < - and un 2 5 n

is bounded in LP(R 3) for 3 < p < 12 . In addition, u n u n

Lemma II.1 will be proved in 11.3.

Now, we extract (if necessary) a subsequence of p , we still

denote by pn , satisfying

-9-



J Pn - p weakly for I < p <Lp(IR s) 3

(15) u , u weakly for 3 < q < 12 and u + u a.e.
L q(R,)

u , u strongly for q < 12 and u- fp(y)T i- Tdy

loc

Indeed, since un  satisfies - Aun 4lTp n in ZI'(R3), we have by the

well-known Lp estimates (see (I ] for example) Ilun 1 "W432I < Const.

loc

and by the Sobolev inbeddings un  remains in a compact set of Lq (BR )

for any ball BR  and for any q < 12 .

We now want to prove that p is a solution of (12). We first remark

that, for all R > 0 ,

f pdx = lir fB Pn dx <M
BR  n 00o B

3 ) nthus PELl(3) and p 0 M

In the same way, using assumption (8), we prove that

0 i V(x)p(x)dx li !L' R xp(xd
R3  n 3 V()n(X

Since j is convex and nonnegative, we prove now

f j(p)dx < -:m J(Pn)dX

4/3? 3
Indeed it is enough to prove that J defined on D(J) - {P E L4( 1R)

f 3 j(lpI)dx < +-} by J(p) = f j(Ipl)dx is lower semi-continuous on

L4/3QR3) (for the topology of the norm) and this follows obviously from

Fatou's lemma.

To conclude, we just have to prove that

E(p n ) E(p)
n u

-i0-



ButE( n  f R3  u dx and Pn converges weakly in L6/5(RS) towards p

Thus we need to prove some compactness on u : this will ben

achieved by the following two lemmas (proved in section 11.3):

LEMMA II.1 If Vu E L2 0R3 ), u E LPOR) ( 4 p 4 -. ) and if u

is axially symmetric and u - u , then we have

2(16) iu~~z) • {llu l2/(p+2)ll llP/(P 2)lizl-2/(p+2)r p+2
(16 l~rz~ < {j~11L 2  OuL p r

for some C independent of u .

LEMMA 11. 2 If (Vu n ) is bounded in L2 ( R 3 ), (U n) is bounded in

L (IR) for 3 < p < I and if u is axially symmetric and u = unn n n

then (u n) is relatively compact in L q(R 3 ) for 3 < q < 12.

In particular un (or a subsequence) converges strongly to u in

L6(R 3 ) and we are able to conclude.

Step 4) We argue by contradiction. Suppose f P < M , where p is

a solution of'(12). Define pa by :

p (r,z) = p(r, 9) .

We have %M f and

a =C{ j(p) + Vp} - IE(Pa)

But E(pj) (x2 -Y2)+ 2(x3-Y3 )21-1/2 dxdy

W want to compute (formally) d9(p) I and to prove this qatt
da - and o pove hisquantity

is negative. Suppose we have done so. In this case, for a near I and

a > I , we have f P0 < M and a(po) <&(p).

This contradicts the choice of p and this proves that all solutions p

of (12) satisfy

f P M-11-



d

Thus, we compute now - &(P)I (this can be made rigourous
d a a- +1

in a straightforward way)

I . I x3-Y3I1
a ) - j() 0vo -. 2 (x)p(y) - dxdy

a l E(p)Ir

,; S(p) 4 (P)+ - p(x)p(y) x' dxdy " ()

But &(p) - I < 0 and we conclude.

(17) d& a 1

Remark 2.6. We have used in the proof above symmetries of the

problem : first, when we choose a good minimizing sequence which

enables us to obtain some compactness via Lemma 11.2 and arguments

similar to [36 1 ; second, in the scaling argument of step 4).

Remark 2.7. Let us indicate how the above proof may be modified to

treat the case of potentials V which do not satisfy (3) or (8).

Case 1. We assume

(3') V E LOO (R 3 ) n w'C(R3) V(x) - V(r,z), V is nondecreasing in zloc"

(8') T-z -V a.e.

(18) eas(V > c) < , for every e > 0

Then, the conclusion of Theorem II.l holds.

The proof is exactly as above : just with a few modifications, we

use (3') in step 2) since (3') implies

f V <' VP .

In step 3), we pass to the limit in the term Vpn in the following way

Sn - f VP- -V P .

-12-



As abo ni fv + P ' fVP

On the other hand

fV-Pn f (V- < C) v -o n + f(V-> C) V- Un

and if V-P nI < C J '< CM

(V - :)

( V- n -- f V p (because of (18)).
(V=>0) n - 00 (V->C)

We may replace (8) by

av av
(19) D r + DVz < 2V a.e.

or by

(20) j'(t)t <2t , for t > 0

If (19) holds, in step 4) we set p(x) - P() and compute d (Fo(P
c-+l1

If (20) holds, in step 4) we compute &(6P)19.+,

Case 2. We assume now that V is spherically symmetric and V satisfies

(3") V E L(R 3 ) n WI(W )

(8") r-X 1 2 V a.e.
ar

and (18) ; (Again (8") may be replaced by (20),and (3"), (8") may be

relaxed a bit, but we will not consider such generalisations here).

Then, the conclusion of Theorem II.1 holds provided D(&) is replaced

by D(&) - {pIE D(&),p(x) - p(Ixjl)

The proof is the same but step 2) is suppressedsin step 3), Lemma II.1

is replaced by Proposition II.] of the following section and in step 4)

d &(P )I

where P (x) p(-)

-13-



H1.3. Some technical letms

In this section we want to prove Lemma II.! and sowe related

results : we begin by proving a Proposition which generalizes

results of 136 1, 1I I].

PROPOSITION 1I.1. Let N > 2 , I • p l , I q = . There

exita some constant C > 0 , C - C(Np,q) such that for all u

b'ctisf' iflg :Nq Vu E Lp(t N) , u E L q(R) , u(x) - u(;xI)

we have

- (N-Op'

(1) Iu(x)I C { IVu11q+p  1u11 q
''p J'x q+p"

LP  Lq

where p' ia the onjugate exponent of p(/ + 1, . 1)
p

Remark 11.8. If p - q (where p is the sobolev exponent given

by -L - I- -1) then (21) may be replaced by

pL
(21') U(x)I C 11 Vu 11 L i 'XIP

Indeed, if Vu E Lp  and u E L , then by Sobolev imbeddings

uE LP

thus we may apply (21) with q - p and we find (21').

The special case p = 2 of (21') is given in [11 1, while in

[36 1 the case p - q - 2 is given and also used in [29 ].

Pnxf of Prpositicn II.l. Let us make a formal proof, which can be

easily made rigorous. We still denote u(r) - u(x), where r - jx.

We have d(I ( rI) r - a luLiI u'Ir N- for r > 0

-14-



where CL 5 , + I

Thus we have

Iu10L N-I r lul" Ilu, - I do
r

af ac [Ij ul ( - lI)p oSNIdh] I/p' 1  U' P5NI'd,] "p

0 f 0 jj q  t- d.] l/p' if0 i p N-1 do] ip

C; 1 u 11q / p '  II Vu N
L qR N)  LP(IRN)

and this implies (21).

We now turn to the

PrOf of LWn= II.1. We introduce for x in x2 and r - IxI

zv~x) - v(r) = u~r,t)dt•

2

Then v is radial, Vv E L2 (K2 ) since Vu E L2 (%3), vE LP 2 )

since u E LP(R 3) and we have

IVvI L :11/2 11Vu II L

Ilv II p Ilull
V 1L P (j 2  II P 11 u L P c Its )

Applying Proposition 11.1 , we find
2 -- _ j__L 2

Iv(r)l < C lVu 11 p+ 1 "u 11p+ 2  l I-'I 2 ,zlp+ 2r p+

L2 (it 3) Lp (R)

< C hlVu 11
2 /(p+2) 11 U P Pp+2) I z p / ( p+ 2 ) r - 2 / ( p+ 2 )

L2( 3  LP( s )

Now, we use the fact that u - u , thus for z > 0 we have

v(r) > - u(r,z) . And this proves the Lemma.

-25-



Proof of Ienm 11.2. We just need to prove that if un  - u

weakly in Lp  for 3 < p < 12 , strongly in L for p< 12

and if u - u , then this, together with the assumptionsn a.e

made on u , implies that u. converges strongly in Lq  forn n

3<q< 7

We first prove that

dz up(x,z)dx dz uP(x,z)dx , for 3 < p < 7

Indeed, remark that we have, for z > 0 fied

u(xz) dx dz ua(xz)dz (z , for 3 < a < 12

thus u (..z) is bounded in LaORi) , for 3< a < 12n

In addition, by Lemma I.1 , we have

Iu(,,)I < c(lxl), where c(t) 0 as t *.

Applying the compactness lema proved in ( 36 1 (see also [ 12 , 11 ])

we obtain

v (Z) f up ( xz)dx ---. , v(z) " - uP(xz)dx , for 3 < p < 12

Now, obviously, Iv nI 1 C and
nL 1 (0, I)

II n . -11Vunld x <' i i12(p-i) 1/211 - 11 (O, ) 4. C

and for 3 < p < , .,p-1) E (3,12).
avThus It n C and this implies Nvn II < C.(Actually, to

be rigorous, .c n.ceti t( assi6 u smooth and we then argue by an obvious

density arFpunt). Since v ---- v in 10,3 1, we deduce
n ae

dz f upxz)dx ds uP(x,z)dx , for 3 < p < 7
0o fI Un fo fR 0 -1

-16-



There just remains to prove

ii uP(xz)dxdz + f uP(xz)dxdzI zl> I I fzl> I

But u ae u and for each a > 0 , the set {u > a) r{Iz l> 1}

is contained in the set {rzl < C, } n {Izj >ii - a here we just

use Lemma II.1 But the measure of I is finite :
a

1i I = 2 0dz r dr -- <
t J0 C

and this implies

uP(x,z)dxdz + up(xz)dxdz, for any a > 0

a a

and p < 12 (we just use the fact that un  - u and flu II 12 12C).
a.e L (I a)

And finally

f (u P+ up)(xs z)dxdz < aYfIR3 (uP'+ uPY) dx

< Ca if Y is choosen small enough

and this concludes the proof of Lemma 11.2.

II.4. Angular mmetum prescribed

We now consider another type of functional, which comes out from

another model for rotating stars (the angular momentum is now prescribed).

Let us denote by

1 1

o f j(Ipl)dx + j f p(x)L(m (r(x))) dx
IR 3 2 R3 P rx)2

1 _ ff PX)A-Py( dxdy

mR x I

-17-



with & defined on D(&): the set of functions p lying in

L1 n L6/5(R 3 ) and such that

f j(lp(x)l)dx < , f p(x)L(m (r(x))) 2 d < c

IR3  MR3  r(x)

Here, we define: m (r) = f p(y)dy (with r(x) = x forP (r (y) <r)

all x = (xtx2 ,x3)); and L satisfies:

(22) L is a nonnegative, continuous, nondecreasing function on R+

We will assume that j satisfies (2), as above. Such a functional

&(p), as said above, arises in a model of a rotating fluid with pre-

scribed angular momentum: see [6] and 14] for more detailed explana-

tions.

THEOREM 11.2. Let M > 0. We assume (2), (6), (7), (22) and

(i0') l--- j (r) t - 4 / 3 < +00.

t-*0
+

Then there exists p in D(g) such that f p(x)dx = M, p is even

JR

in z and p is nonincreasing in z > 0, and

a(p) = mi &(P) = min &(P)
f =M f <M

P > oP E (&) P > OP E b(&)

where D() = [p t D(g), p(x) = p(r,z)} (where x = (r,O,z) in

cylindrical coordinates).

REM4ARK( 11.9. Again this result contains those of [6], where some

additional assumptions are made upon j. We give below i) some suffi-

cient conditions for (7) to be satisfied, ii) other existence results

without assuming (10').

We now claim, that, except maybe for (10'), the assumptions are

4
optimal: indeed, as in II.1 (Remark 11.3) we just indicate that -

3
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is a critical exponent and we refer to [6] for the justification of

this exponent (see also section V below). Now, concerning (7), we prove

it is, in general, necessary: take j(r) = t 8 (a > 0, 8 > 1) and
3

assume p is a minimum of & over p > 0 satisfying the constraint

fp = M, then necessarily

d 10
da 3 P ' &(- p()) o=+i o

but &( p(-)) 1 1 -dx

a3 a a3(a 2)2jJ r 2

1 p (x)p(y) dxdy

therefore we have: 3($-1) fj(p) + fp(x)L(m (r)) 1 1 frp(x)(x)P r 2  2 J) Ix-y| xy

and this implies 9(p) < fp(x)L(mpW) _ dx < 0 (as soon as p J 0,

P 2r
L / 0).

Proof of Theorem 11.2. The proof follows exactly the one of Theorem II.l.

The only real modification is in step 4, where, having obtained a mini-

mizer p(J 0) of & among all p satisfying p > 0, fp < M, we want

to prove that fp = M. The argument we are going to use is inspired

from a technique due to E. H. Lieb and B. Simon [28]: it is the only

part of the proof where we use assumption (10').

Let us first remark that (10') implies that j is differentiable

at 0 and j'(0) = 0. In addition, it is easily seen that it implies

that j is Lipschitz continuous on every interval [0,T] (for all T > 0)

and that we have

lim j'(r)t /3 <

t-0 +

For simplicity of notations and of the presentation of the argument, we

will assume that j is C1 and j' is strictly increasing.
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If we argue by contradiction and if we assume: fp < M. Then

using for example [6], we see that p satisfies the following Euler

equation:

3
min(j'(p), j'(p) + f(r) - u) = 0 a.e. in 3

-l L(mp (r))

where u(x) = Bp = fp(y) Jx-yI-ldy and f(r) = f - ds
3

r s

Of course this may be rewritten: p = (j')-((u-f(r)) + ) and we finally

obtain:

u ((u-f(r)) +), Vu E L JR 3 u E P (IR 3 ) 3 < p < 12

where = 4n(j')-

3
Since we have -Au > 0, -Au 1 0, u > 0 in JR , we deduce by

classical results:

u(x) for jxj > 1 and for some a > 0

thoterf~) L(M) C

On the other hand: fr) < L( = -C 2 thus we finally obtain
- 2r

2  2r
2

p > (j ) - c ) )+

- 2r

In particular, we have

f p(x)>. (j') ( )dx
A A 2Tx1

where A = {JzJ < r2 , r > C}, for some constant C > 0. Since we

have, because of (10'): lim (j')-1(t)t-3 > 0 and since
t-0+

f dx = + , we obtain a contradiction. This proves fp = M and

A jxj 3

we conclude.

Now, we give some conditions under which (7) is satisfied:
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. . ... .. . . . . . . n , I a .I a | i l - - i

COROLLARY 11.2: Under assumptions (2), (6) and (22); and if we assume

either

(10") lir j(t)t - 4 / 3 
- 0

t-0O
+

or (10') and

lim t)t- 4/3
(11) t+ t( = +

M > M' > 0, for some constant M; large enough;

then (7) is satisfied and thus the conclusion of Theorem 11.2 holds.

The proof of this result is identical to the proof of Corollary II.1

and we will skip it. Let us give another existence result where (10')

is no longer assumed:

COROLLARY 11.3. Under assumptions (2), (6), (7), (22) and either

L(t)t -4 / 3  is nonincreasing for t > 0

or j(t)t -3 / 2  is nonincreasing for t > 0, L(t)t- I  is nondecreasing

for t > 0;

then the conclusion of Theorem 11.2 holds.

Proof of Corollary 11.3:

Again the only argument to be changes is the one corresponding to

step 4 of the proof of Theorem II.l. With the same notations, we assume

fp < M. For the sake of simplicity let us assume j and L are of

class CI : then

1 L(o 3m (r)) 5

J(p(X)) f j(p) + a- f P p(x)dx - a 5 1 (x)( dxdyY22 Oxd-°r x-yidy

Since we must have: L a(p 0, we deduce
d6 0 ~+

3 rj(p) + 12 L( p(r)) f 3L'(m p(r))m P(r)
P(x)dx + p(x)dx

r r

5 1 ff ixP(Y) dxdy = 0
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Now, if we assume L(t)t- 4/ 3 is nonincreasing, we have: 3L'(t)t < 4L(t)

for t > 0 and the preceding equality yields a contradiction with

?(p) < 0.

The case of the other assumption of Corollary 11.3 is treated by

r x
a similar method, using p(-,z) instead of p(-).

a a
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III - PXISYMMETRIC ROTATING FLUIDS : THE INCOMPRESSIBLE CASE

We now consider briefly the incompressible case of an axisym-

metric rotating fluid . In this case (see [4 1 for the justification)

we consider the same functional & as in 11.1 or in 11.4. but with

j - 0 , that is either

(p) = V(x)p(x)dx _ W i (x)P(Y)T dxdy

or

(P) = (x)L(m (r))- dx - I3x rR3  dxdy

And we want now to minimize 8. over all functions p (in D(&)) such

that :
0 < p < I a.e. and j p(x)dx = M

Like before the first functional corresponds to the case when the

angular velocity is prescribed, while the second gives the case when

the angular momentum is prescribed.

For the sake of simplicity, we just give a result concerning the

minimization of 8. since the results and methods of this section are
2

very similar of those of the preceding one.

THEOREM 1II.1. Lat M > 0 and let L satisfy (22). Then there exists

P in D(&2 ) such that p is even, nonincreasing in z and

2 = mn 2 = min 2 (p) < 0

P GD(8 ) P E D(C2

where D(&2 ) = {P G L' n L 6 /5QRa), p(x) = p(r, ) for aZZ
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x - (r,6,z), and f p(x)-I- L(m ~(r)dx < +}1t 3  r _ P

Pemark III.1. This result is essentially the same than the existence

result in [ 4 ] (in 14 1, L is required in addition to satisfy L(O) = 0)

but proved in a different way (Remark also that a third approach,

consisting in solving directly the Euler equation by a fixed point

argument is given in [5 1).

Reark 111.2. Some qualitative properties of the solutions of the

above minimization problems are given in [4 1 in particular any solution

p satisfies
P=

G

where G is some bounded, axially symmetric, measurable set. Further

qualitative properties of G may be found in [26 1 , [17 .

Proof of Theorem III.1. The proof is exactly the same than the proof

of Theorems 11.1 and 11.2 . We just remark that as in Corollary 11.1 or

11.2 , (7) is satisfied. That is : in D(&2) such that

0 < p I and fR3(x)dx < M , satisfying

2(p) < 0 .

iV - SOME VARIATIONAL PROBLEMS OF THOMAS-FERMI TYPE

We are now interested by finding p minimizing

(P0) = (p(x) )dx - ff pxf (x-y) P(y)

over all p satisfying p > 0 a.e and p = M

More precisely &(p) is defined over D(&) where

-24-



D(a) = {p E L1(RN) , j(p) E L'(R N ) and

ff p(x)f(x-y)p(y) 
< +0} ,

and j satisfies (2), while f is some given measurable function

satisfying

(23) f(x) = f(r) where r -Ix , for all x in RN

Such a problem occurs in quantum mechanics as Thomas-Fermi type

problems and we will see below some particular examples of interest

for physics ) We could also add in 9(p) a term like

I V(x)p(x)dx but we will not consider this case here which (more

or less) can be treated by a combination of the techniques below and

of Section Ii.

We will first investigate (in IV.) the " extended " problem

namely minimize & over all p in D(g) satisfying p > 0 and

p < M Then, we give some conditions in IV.2 for solutions of the

extended " problem to satisfy actually: p = M . And finally in

IV.3 we consider some examples.

IV.1. Resoluticn of the " extended" minirizaticn problem

We first consider the case where f is nonnegative and nonincreasing

in r

PROPOSITION IV.1. Let f satisfy (23) and

(24) f > 0 a.e. , f(r) is nonincreasing ;

(*) Those examples were communicated to us by Prof. E.F. Redisch.
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(25) f E MPRN) (I < p <

Let j satisfy (2) and

(W') Lim jj - K > 0 with CMu/P<K< wcd q - 1 4

(C is some positive constant defined in Remark 1.1 below) ;P

then there exists p in D(&) minimizing & over all p satisfying

PED(g) , p 0 a.e. and f <M .

In addition if f 1 0 all such p solutions of this minimization

problem satisfy necessarily(up to a translation) : p is spherically

symmetric, nonnegative and p is nonincreasing in I xI.

Remark IV.. If we take N - 3 and f(x) I then p - 3 and

4 and (6') reduces to (6). The constant C is defined by
3 P

p P(x)p(y)lf(x-y)Idxdyj < C ip 11  lp 11I+I/P for all p

in L' n L

Remark IV.2. Of course it is possible to generalize (25) by (25')

Pi N I N 0
(25') f E M (MR) + L(R) + L( ) < pi <

i1

and (6') has to be replaced by the corresponding assumption with

q = I + I (and q - 2 if in all decompositions of f as in (25') there

i

is a term in LI(RN)).

Remark IV.3. We may replace (24) by the following

f - F-f2 a.e. , where f, , f2 > 0 a.e. and f,(x) - f,(r)

(24')
is nonincreasing while f2 (x) M f2(r) is nondecreasing.

Then (25) has to hold only for f and the Proposition IV. (and its

proof) are still valid.
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Proof of Proposition IV.1. By a classical use of Schwarz sym-

metrisation process (see [14 ] , for example, for the definition

and properties involved here of the Schwarz syimetrisation) the

necessary part of the Theorem is proved. This also proves that

we may assume that a minimizing sequence Pn  satisfies

pn ( x) - n (r) and pn is nonincreasing

Now, because of (24) , (25) and (6'), exactly as in the proof of

Theorem II.1, we get a priori estimates : f j(pn)dx-< C ,

r Pn(X) f(x-y)pn (y)dxdy < C , (and in particular pnL n Lq < C).

Now using the fact that Pn is nonincreasing and that lip [I L M ,

we deduce 0 < (X) <

I X1,

In addition, from a classical result, since P is a sequence of

nonincreasing functions bounded in L((C,-o)) (for every e > 0) there

exists a subsequence nk such that : P% a.e •

(One could also obverse that pn  is of bounded variation, except maybe

near 0). In the same way as for Theorem II.1, one concludes since

if pn (x)f(xr-y)pn (y) dxdy -. ffp(x)f(x-y)p~y)dxdy

Next, we give some results illustrating a method to prove

the existence of a solution to the extended problem, we use

i) the spherical syummetry, ii) regularity properties of the " potential

u(x) -f * P(x) - f (x-Y)p(y)dy

R
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PROPOSITION IV.2. Let f satiei (23) cd

I f " - f2 a.e. with f. > 0 a.e. (i - 1,2), f. is radial (i-1,2)J -f 1

(26) , ad f1 ,E Mp (0)

Vf I E Ms RN) with I < s < and s < p+l ; or Vf I e L(JN)

Let j satisfy (2), (6') ;

then there exi ts p in D(&), with f p < M, radial nonnegative mini-

mizing a over all p 8atisfying p E D(&), p is radial, p > 0 a.e. and

f P dx < M

Remark IV.4. As in Remark IV.2 , (26) may be generalized assuming that

Vf I belongs to a sum of H-spaces or LP-spaces (and a similar assunp-

tion for fl). In some sense (24) is a particular case of (26) since f

being nonincreasing in (24) is essentially of bounded variation.

Renrk IV.5. If f(x) --- Land N=3 , then Vf E M3/2 (' 3 ) (and

i+1=4 s =3)x
p 3 s-I

Proof of Propositicn IV.2. Let P be a minimizing sequence such that

Pn  is radial. We know by the same argument as in Theorem 11.1 ( Prop. IV.1)

I J(n) , ff Pn f(X**-Y)pn(Y)<C 1lnL q <Lc

for some C > 0 .

Next, we introduce u n(x) - If (-Y)p n(Y)dY , then u E LLRN

(for p < a < p(p+l)).

In addition because of (26) Vu G LSRN) (9r s < .n p+I-s

Since un  is radial u n(x) - u n(lx), we may apply Proposition II.1 and

this enables us to apply the method of proof of Theorem II.1 , and we

conclude.
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pemamrk IV.6. It is possible that (26) may be relaxd, assuming

only f to be in a fractional Sobolev space, then one would need

to extend Prop. 11.I. to fractional Sobolev spaces.

Remark IV.7. If instead of (23), we assume
f(x) - f(rz) where r - 2 1 2/2 , xEIR

and f > 0 a.e. , f is nonincreasing in z ; then similar results

may be proved but we will not consider such a generalization.

IV.2. Saturaticn of the amistrant.

We are now looking to the problem of determining if f P - M

where p is the solution of the extended problem.

More precisely, in this section, we will assume that p E DM)

and p minimizes & over all p in DM ) such that p > 0 a.e.

and f p < M . Of course DtA) may be replaced by D) the subspace

of D(&) consisting of radial fumctions.

We give essentially two simple methods to prove that fp dx - M

PROPOSITION IV.:7. If we asswne (2), (23) and &(p) < 0 (or in a

equivalent way : E D(&) > 0 f M s uch that &()< 0)

and if either

(27) j'(t~t • 2j(t) a.e. for t > 0

or

(28) Nf(r) + f'(r)r • 0 a.e. for r • 0 ,

where f is asaumed (for exconple) to be C1 on (0,-)

then p satisfies f p(x)dx - M
IR

Pmtof of Proposition IV.3. If we assume (27) and that f p dx < M

then computing
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rd

d90P)I 1 f j' (P)P dx - f N 0P (x) f (-y) P(y) dxdy

2&(p) < 0

we get a contradiction from the definition of P

On the other hand, if we assume (28) and that f p dx < M , then

we have, denoting by p (x) - p(3)x

d4 (Pp) - N N~ 1(x))dx-N I N p(x)f(x-y)p(y)dxdy

- R N Nx p(x)f'(Ix-yIAx-y1p(y)dxdy

N(P < 0
2

and the result is proved.

Remark IV.8. The above proof shows that (28) may be replaced by

ff p(x){f'(r-y)(x-y) + N f(x-y)}p(y)dxdy > 0
N N

for all p in Z)(R N ) and p > 0 a.e.

Remark IV.9. Obviously (27) is satisfied for j(t) - ty and ( 4 2,

while (28) is satisfied for f(r) - r- k and 0 < k N .

Remark IV.10. We would like to give another method taken from [28 1

which could be useful in some particular cases. For simplicity, we
I

assume N = 3 , f(r) = - an easy argument gives that one has, ifrf p dx <M,

,jI(p) - 1* p a.e. inIR 3

If we assume that j' is strictly increasing and j'(0) - 0 , then

denoting by u = - * p , we have
1XI

P S(u) a.e. in IR
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where 8 (i,)- On the other hand, because of the spherical

symmetry

_r _y dy > p(y)dy)- • If
u fr - 3py max(r,ly) - I r

&(p) < 0 , then p t 0 and f p(y)dy - m > 0

3 2(

Thus p _ a.e. in R3 ; and now, if we assum f r28( dr w +c,

we get a contradiction, since p E L' . This contradiction proves

p dx - M . Remark that if j(t)t- ( I+ )  1E (0,0) ,then

lir (t)t-  exists and is > 
0 , and t

and r8(r) = += as soon as y >

Of course, it is possible to combine Propositions IV.1 , IV.2

on one hand, and IV.3 on the other hand to get general results for

the existence of a solution to the minimization problem. But for

simplicity we prefer not to give these results but to explain how

they apply to some particular examples. In addition we would like to

point out that Propositions IV.1-3 are only examples of methods

described in the corresponding proofs.

IV.3 Sora exanples.

Exanple 1. " non-rotating stars "

This means we consider the case : N -3, f(x) x . We may

apply Proposition IV.A since f E M3 (R3) ; Proposition IV.3 also

applies since (28) is obviously satisfied and thus we find back

Theorem II.1 (in the special case V - 0) by the combination of

Proposition IV.I and IV.3.
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Exaple 2. We consider the case N - 3 , f(x) -e-I ll( > 0).

We may obviously apply Proposition IV.1 since f E M3 ((R3 ), thus if j

satisfies (2), (6') (with p'3) and (27), and if there exists

p in D(C) such that &(3) < 0 and f p M then there exists

P in D(C) satisfying

i) p is radial, nonincreasing , p > 0 a.e. , P dx - M

ii) P() - _min &L(3) - _min &- P)

p E D(&) p E D(g)

PO0, f i-M P 0, f -M

Finally, for the existence of p in D(&) such that &(p) < 0 , and

5 • M we indicate two simple cases where this can be checked

I) If j is differentiable at O, if j'(0) < 0 , then for every

p > 0 in ZQR') P (tp)It0 j'(0) p dx

and thus the condition is satisfied for every M > 0

2) If lim j(t)/t 2 = 0 , then for M large enough the condition
t -. 0

is satisfied indeed ,(tP) is negative for t large enough if

p E Z+ (IR3 ) , P 1 0 . Remark that (27) implies that j(t)/t 2 is

nonincreasing. We shall see further on (in the next section) that in

the case where j'(0) = 0 and lir j(t)/t 2 = 0 , this condition on
t -+0

M has to be assumed in otherwords if M is not large enough then

the minimization problem does not have any solution.

Exanple 3. We consider the case where : N - 3 , j(t) t 5/3

Of particular interest are the following functions f

(*) This case was brought to our attention by Prof. E. F. Redish and

seems to arise in quantum mechanics.
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( 9 f r) +A U r A' -11 r
(29) f(r) e , with )4,P',A, A' > 0r r

Before looking at the special case where f is given by (29), let us

remark that in order to apply Proposition IV.I-3 , one only needs to

assume either (24) and

(25") f E MP(a s ) , for some P > 2

(or p-I and I ~fI[ small enough)
2 n M 3/2

3
or (26) (with p - 3

In particular we have

PROPOSITION IV. 4. Let f satisfy (26) (with p = 3) and assume there

exists p in D(&), such that p is radial > 0 a.e. , 0 gM

and L(p) < 0 . Then there exists p in D(g) satisfying

i) p is radial, p > 0 a.e., pI3 p dx - M

ii) 9(p) - min{&(p)/p radial , p > 0 , p E D(g) , p M}

Finally the existence of p may be obtained using the methods of

Corollary II.l. : in particular we find that

i) if, for r small enough, we have : f(r) > Cr - k for some C,k > 0

then for every M , there exists p as in Proposition IV.4. (just

compute ))3 P(

ii) if there exists p such that f p(x)f(x-y)_(y)dxdy < 0 , > ) 0

then for M large enough, the existence of p as in Proposition IV.4

is insured (just use the fact that 9(8p) . -0 if e - +-) . Of course

ff P(x)f(x-y)p(y)dxdy < 0 being true for some p is necessary for the

existence of p as in Proposition IV.4. And it is quite obvious that
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it is satisfied for example if f f(r)r2 dr < 0 (eventually - 00).

We turn now to the particular case where f is given by (29)
A -jir _A' -i.'

f(r) e - - e
r r

Obviously (26) is satisfied. Then, a solution of the minimization

problem exists as soon as there exists p as specified in Proposition IV.4.

By the preceding remarks , this is in particular satisfied for every

M> 0 , if A > A' (or if A - A' and j.' > v) ; and for M > M0 , if0

A A'A 1 s2 < 0 .
0- <,2

In the next section, we consider the Euler equation associated to

the special case N - 3 , f(x) I or f(x) - e PIxI l--

Before that, we would like to point out that we deliberately ignored some

aspects of these minimization problems

i) regularity of solutions, ii) properties of compact support of solutions.

These two aspects may be studied with the help of techniques due to

[6 1 , or by direct examination of the associated Euler equations ; we will

not study such problems here.
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V - THE EULER EQUATION

First, let us derive formally the Euler equation associated with (1)

a solution p of (1) must satisfy for some X~ E

P'(P)+ V -BP >X if P =O

(30)

V (P .................>!

where Bp!-) IP(y)dy ,see [6 ] for the proof of this assertion

fpx I J I-y I
(provided natural assumptions hold for j and V).

In all this section we will assume that j satisfies

(31) j is a C1  positive, strictly convex function on 1R+ such

that j(0) - j'(O) =0 . In particular j' is increasing and =(j')
1,

exists, is continuous on fR+ and W(O) - 0 . Thus, (30) is equivalent

to

34

(3' jt(p) -max(u+X-V,O) 0 a.e. in 1R3

or

3i

(32) -Au =4TB((u+X-V)+) a.e. in IR

V~~~ ~ - BP UE EUTO

since p e (R deive orL Rh) and in some sense u 0 at infinity.

Thus, we are looking for a solution (u) of

- Au = ((u+X-V) ) a.e. in p , u() 0 u > Q

(33)((uX-V))dx 

= M

with a(t) - 4nr i(t).

The goal of this section is to look directly at (33), to see if

there my exist a solution (Xu) of (33) or equivalently a solution p
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of (30) even when the energy & is not bounded from below . This

phenomena occurs in a somewhat related problem see [ 8 1 , [ 15 1

for example. We only consider the case where V 0 (but for general V

similar arguments can be made) : Section V. is devoted to the study

of (33), while in section V.2 we consider the case when the potential

T is replaced by I e . Finally in section V.3 we study the

limit case j(t) = t4/3

Remark V.I. If V is given by a Coulomb type potential in jR3

V(x) C

1
for some C > 0 , then (33) is equivalent to

(33') - Au = 8((u+) +) + 47T C6 in Z-'(R 3)

where u - u +C
w thus u > 0 a.e.

If we take to be a pure power : (t) t1/Y(y < 1), then by the

results of [30 1, there is no solution of (33') if y < I ; this

implies that (1) does not have any solution for j(t) = CtI+Y  and

y < L . If y > , we may apply our minimization techniques : for
32 P

example the fact that the constraint is saturated follows from the

method given in Remark IV.10 . We believe that, combining methods of

30 1 and of the next section, the remaining case I < y 4 - can3 2

be treated (note that for y < , the energy & is not bounded from

below) ; and we hope to be able to treat this case in a future study.

We now restrict our attention to V - 0 (smooth, positive functions V

may be treated by similar techniques).

V.I. Solving the Euler equation

We thus consider the problem : find (u,X) solution of
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-Au =((u+X)+) a.e. in iR , u 0

(33) J

((u+X) + )dx = M > 0 ,

where X E R , M is given and the exact class where we look for u is

H ,2R N ) = {u , u is radial, V u E L2 (N uE L2N/ (N-2) (RN)}

r

In all what follows, we assume N > 3 . The fact that we restrict our

attention to radial solutions may be justified by the results of [22 1

[23 1 . Remark also that X necessarily is nonpositive : X < 0 .

In conclusion, we look for (u,X) in H x (-o,0] solution of (33).

A direct application of the results of [ 11 ] gives immediately

THEOREM V.I. Let j satisfy (31) and

(34) lim j'(t)t-(N-2 )/(N+2) = 00

then, for every X < 0 , there exists a solution u of

(33') - Au = ((u+X) +) a.e. in IRN , u > 0 , u E H

in addition u is decreasing , u G C2(R) , ((u+A)+ ) E L OR )

and there exists R > 0 such that
0

I u(Ro) = - X , u'(R 0 (N-2)XR°

IR N-2
u(r) =-X( r ) ,for r > R 0r o

rn particular, there exists at least one M > 0 such that (33) has a

solution (u,A) in H x (- ,0).

Rewark V.2. (34) is equivalent to : lim (t)t- (N+2)/(N- 2) = 0
t- 00

N+ 2
and one knows (see [ 32, 36 1 or ( 12) that i--2 is the best

exponent in order to solve (33'), this proves that (34) is nearly optimal.
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The exponent given by Theorem I1.1 (or its immediate extension to

N
higher dimensions) is N-2 : we see that looking directly to the

Euler equation improves the conditions on j and that there are

solutions of the Euler equation even with P unbounded below.

We will see further on that in general one cannot say more for

the existence of one M : indeed we will show that for j(t) = t 4 / 3

(in IR 3) there is only one M such that (33) has a solution. Never-

theless, by a more precise analysis, we will be able , with suitable

restrictions on (or j') to generalize this conclusion.

Renark V.3. Because of the prior reduction the corresponding density

P is P = CN((u+X)+ ) , where CN is a constant depending only on N.

And obviously , p E COR N ), is radial, nonincreasing and with a compac.

support equal to B = { <j R }R o
0

Proof of Theorem V.I. The first part of the Theorem is an immediate

consequence of the general existence results of [ I I ] . Now, since u

is decreasing there exists a unique R such that u(R ) = - X and

for r >- R we have : u(r) < X and thus - Au = 0 if IxI > R0 0

But, this implies rN-Iu (r) RN-lu'(R ) for r > R and since
0 0 0

u(r) + 0 as r t + , we conclude by a straightforward computation.

(Remark that in 1 31 ] , another proof is given reducing (33) to a problem

in a ball and using then the results of [32 ) ).

We now prove the claim made on Remark V.2. concerning the case

j(t) = t4 /3  actually we consider the case of (t) = ta (correspon-

ding to i(t) = Ct1+I / ') , for simplicity we restrict ourselves to N=3.
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PROPOSITION V.1. We assume that 8(t) - ta , with 0 < a < oo

If 0 < a < 5 and if a # 3 , then for all H > 0 , there exists a

unique (u,X) E H x (-o,0) solution of (33). Moreover u E C2 ORN) and

u is decreasing . If a = 3 , then there exists a unique H such
0

that (33) has a solution in H x (--c , 0) : in addition for all X

(33') has a unique solution u (with the same properties as in

Theorem V.1) and M = ((uX+X) +)dx is independent of X .

Remark V.3. It is easy to prove if a > 5 , then (33) has no solutions

in H x (-<o,0) for every M > 0 .

Before going into the proof of Proposition V.I. , let us make some

preliminary reductions (independent of the choice of a).

Indeed, instead of looking for (u,X), we are going to look for

(u,R ) as in Theorem V.I.
o

More precisely suppose we have a solution v of

- Av = a(v) in BR , v > 0 in BR

(35) v = 0 on 3B , v E W2 ,q(B ) (V q < cc)

fBR a(v)dx = M

for some R > 0 , then by [22 1 , v is radial decreasing and if we set

v(r) N-vR) + Rv'(R) , for r > RI vr N-2

r

X - Rv'(R) < 0

u(x) = v(IxI) - , fcr all x in &N

then (u,X) is a solution of (33) in Hx(- ,0).
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On the other hand if (u,X) is a solution of (33) in H x (-,0)

then it is easy to see that u is decreasing and if R is the

unique solution of u(r) = - X , setting v - (u+X), we see that

(35) is satisfied for such a v and such a R .

This remark (which we will also use later) being made, we turn

now to the proof of Proposition V.I.

Proof of Proposition V.1. (see also [31 1).

We consider first the case when a # I ; then let us denote by v

the unique solution of
-Av = $(v) in B I , v > 0 in B,

v - 0 on 3BI  *

The existence for 01.> I follows from [2 ] (for instance) while the

uniqueness is proved in [22 1 (the case at < I is well-known).

Obviously vR(x) = R2(-a) v(x) is the unique solution of

-AvR = (vR) in BR vR > 0 in BR , vR 0 on BR 

Now let us compute

= Rv'(R) = R2' (-a)
R

and B (R )dX = R 2a/(I-)R 3  f (0)dx = R - a 8(O) dx

and this proves the Proposition (at least for a 0 I).

If a = I , then R in (35)is prescribed by X I (R 0 ) - +1 where XI(R)

is the first eigenvalue of -A over H (B R). In addition v in (35)

is prescribed by f v dx M and we conclude.
BR

0

We now give a few partial results which give a more precise description

of the set of M such that (33) has a solution (u,X) or equivalently
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such that (35) has a solution (v,R). We insist on the fact that this

study is a priori difficult in view of Proposition V.I. and that the

results we give are only partial ones. The first result, in some sense,

represents the counterpart of Theorem II.] where the case

1 (t)t - 3 < - is considered.
t -00

PROPOSITION V.2. Under assumptions (34) and

(36) lira OM(t t - N ( N - 2 )  Go

t -+.00

(37) Ti (t) - < C
t+ 0

and
t~t-vt t 0<e<2N

(38) lim ta(t)-e W)< 0 with y(t) - (s)ds and O< O<N- 2

t -+ t 2 (t) 2 /  ' 0

then there exists M E (0, +oo ] such that for all M E (0,1o) there

exists a solution (u,X) of (33) in H x (-0,0).

ReA V.4. Assumptions (34), (36) and (37) are just assumptions on the

shape of a which are quite natural . On the other hand (38) is a

technical assumption (we believe it is not necessary) which insures that

all solutions of

(39) - Av - O(v) in BR, v - 0 on 3BR s v > 0 in BR

satisfy 1v 11 0 R C(R ,R I) if 0 < R 0 R < R < +00L(B) ol O

This a priori estimate is proved in [13 ].

Prof of Proposition V.2. We begin with a remark we only need to

prove

1) for every E > 0 there exists a connected component tE in

R x Cb(R N) such that
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i) if (R,v) E t , then v solves (39) ,

ii) { Rjv,(R,v) E 'C C} D [e,Ro -C , where R is some fixed

positive real (eventually infinite then R - e means .
0

2) Let K {v solutions of (39)} and mR - sup f (v)dx.

then mR -) 0

R 0

These two claims will be proved in two steps. We first define R byo

X(Ro) = lim (t)tI (if this limit is 0 , then R 0n ).
t1 00

Step 1. We are going to use a topological degree argument and a theorem

due to Leray and Schauder [ 25 ] our argument is reminiscent of a

similar argument used in [9 ] . Let us first transform (39) , by a simple

rescaling (39) is equivalent to

(40) - Av = R2 0(v) in B 1 , v = 0 on 9B , v > 0 in B

In view of the choice of R , we have for all R < Ro 0

R lim (t) = R2 l(R ) < R2A (Ro) = A (1)
t 0 t 0 ol 0

Let c > 0 be fixed, because of the preceding inequality, we have

L (B1 )

for every v solution of (40) with R < R - c and for some a > 0o

see ( 16 1 or [ 13 1 for a proof of that observation.

On the other hand, by the result recalled in Remark V.4. we have

IvII < C
L (BI)
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for every v solution of (40) with c < R < R° - c , for some

C> 0.

Now, we introduce the following compact operator FR  from

C(B) into C(iB) u FRu - v is defined by

S- Av R06(u) in B1 , v -0 on aBI

(41) v q(B) , V q < -;

where 8 is defined on IR by 8(t) -0 if t < 0 •

Suppose we have proved that the topological degree of FR on the

open set Q - {v E C(BI) , a < 11v 11 C < C} is different from 0

and more precisely suppose we have proved

d(I - FRD Q,0 ) - -1 , for all R E [e,R 0-e 1, then by a fundamental

result of Leray and Schauder [ 25 ], the first claim is proved (extending

functions which are zero on BR b., zero outside BR)

Thus, it just remains to compute this degree. First, let us

compute d(I-FR,QIO) where Q, - {u E C(B1), GU L < al . In view

of the estimate recalled above and its proof (see [16 1) we see that

d(I-tFR,QIO) is well defined for 0 < t < I and is thus independent

of t :
d(I-FR,QI,O) - d(I,Q1 ,0) - +1

since 0 E QI *

Now, we want to compute d(I-FR,Q2,0) where Q2 { fu E C(B1)

II u 11 , < C} , with C choosen large enough for this degree to be well
L

defined in view of the a priori estimates

Let p > AI(BI) , it is easy to check that the proof in [13 ]

gives the following estimate :1H II L < C for all u solution of

- Au- tR2 8(u) + (1-t)(pu+ + I) in B, , u > 0 in B, , u - 0 on aB! ;
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where t is any real in [0,1 1 . Thus, if F is the compact

operator defined on C(B1) by Fu - v is the solution of
+

-Av - u + in BI , V= 0 on 9B
then, we have :

d(I-FR,Q2 ,O) - d(I-F,Q2,0)

But, if Fu - u then u by the maximum principle satisfies

- Au - Pu + I in B, u > 0 in B1 , u - 0 on 3B,

Since we have chosen U > X1 (1), this is impossible and F has no

fixed point in Q2 ' thus : d(I-F,Q2,0) - 0

In conclusion, we have, since Q -Q2-;

d(I-FR, Q,O) - d(I-FR,Q2,0) - d(I-FaQIO)

Step 2. We now prove that mR  0 VLet 1 be
R-+ 0 R apstv

eigenfunction of - A corresponding to X,(R) : we normalize it by

f. v dx - +1

Thus, in particular, on B we have v(x) > > 0 , for someBR/2 RV N

fixed a > 0 .

Now multiply (39) by vi and integrate twice by parts, we

obtain :

Cr
vv-R dx - J (v)v dx , for some C > 0

BR BR

Because of (36), for every K > 0 , there exists to (- t (K) such

that a(t) > KtN/N - 2  if t > t
0 N-2

In particular (t) > 2CI t if t > max(t C 2

2a~ N-2)
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This implies

! J-IJ f 8>(v) vR dx >
R2 BR BR rv > t 1O

2C f

> R BR r) v> {v dx

and

RLfB )(v > t)vR R2 f r)v "r R R 2f BR t1 ) R BR tl) R

Thus,

BR B(v)vR' dx e - 2

R
and N-2

2C1  2C! - 2  2C 2J ~ (v) dx 4 RNt < R N2 1 2:.
BR/ 2  ( I  (to0(- ) -2

C2toRN- 2 + C3K7 (N-2)/2

Since all solutions of (39) are radial and decreasing (cf. [221),

we have

0(v)dx - " R(v(r))rN- dr % f R/2 N(v(r))rN-I dr
BR 0

+R C(v(r))rN-
1 dr

+ CN R/2

8(v) dx + C2 -' R2I2 dr
BE R/2

T

since $ is increasing and v is decreasing, and therefore

fBR 0(v)dx 4 ( 1+ 2N) f BR/ 2 0(v)dx

In conclusion, we have proved :

fBR 8(v)dx C4 t0(K)RN-
2 + C5K(N-

2)/2
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,Choosing first K small and then R small, the claim is proved.

Pimark V.5. We use (36) only in Step 2, and to obtain similar

results with other types of growth at infinity, one would have

to make similar arguments as in step 2 (maybe for R - -).

Another example of the same general method is the following

result which we will not prove here for the sake of simplicity.

PROPOSITION V.2. We asswne that satisfies

(42) lim (t)t- 0
t ' o

(42') Lim (t)t exists in (0, =,

then for all M > 0 , there exists (uX) in H x (- 0,0) solution

of (33).

Remark V.6. This can also be proved by a simple use of bifurcation

results.

V.2. Another type of potential

We now consider the case where in (1) , is replaced by

e- Ix1 I
e I  , then (33) has to be replaced by

Au + P = ((u+X) + ) a.e. in R , u > 0 in R3

(44) u E C2 (R') ( H , < 0

f. ((u+X)+)dx = M

Similar arguments to those developped in the preceding section can

be made to prove that under very general assumptions (similar to those

encountered in V.1) the set of M such that a solution (u,X) of (44)
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exists is of the form (Mo,-) for some M > 0 . In addition u is

decreasing and if X > 0 , we have that u(x) - C e -  T7 for

lxi large enough. In order to restrict the length of the paper,

we will not prove here such results but we will just examine some

general example proving that for M small enough, there cannot exist

a solution of (44) and thus there does not exist a solution of the

associated minimization problem (see Example 2 in section IV.3).

PROPOSITION V. 4. If we assujne

t

-~ N
(46) lir (t)t- l - 0 , with a <N

t+ 0

then there exists M such that , for all M E (O,M) , there exist

no solution of (44).

Proof of Proposition V.4. Assume there exist (u 'X) solution of
n n

(14) with M n and let us derive a contradiction . We first prove
n

that un  converges to 0 in LO(R N

Indeed we have

rN-I d un r N- 1 +2
0 <- ={8(( + -fnu }dsdr n0 n

and therefore

du C

(47) NIn N n I for r > 0,
r

whe re E - 0.

n

Since we assume '45), by [ 361 (see also [ 1 ], [12 1) we know that
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n is exponentially small at infinity and we deduce

C

(48) lun(r)I < -2 for r > 0nN-2
r

Now' let R > 0 be fixed, on BR  we have

-Au + V12 u -f in BR

n

un1 R  
R

where f E L(B R) and f 0 0
n Rn I (BR)

By wellknown regularity results, this implies

n N

u -- 0 , for all q <
n Lq(BR)

But 0• < ((u + X ) + < a(u ) and by an easy bootstrap argument

n * 0

(using (46)) we obtain u n- 0.

L (BR )
n -R o

This, together with (48), implies u n '0 0

L w ((RN)

Now, from the maximum principle (since u (0) - II u I
L

we deduce :

112 un (0) < a3((U n+ X n) +)(0) < a(un (0)).

In view of (45), we have a contradiction ; and that contradiction

proves the rroposition.

Remrk V. 7. This proposition, compared with Theorem II.1 , shows

that if we replace ,by e then in general, we have

to assume M > M in order to solve (1) (or (33)-(44)).The fact that

it is enough to assume M > M is studied in Section IV.
0
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3 t4/3
V.3. The limit case : j(t) _ t

34/

We have seen (cf V.I. and section II) that j(t) - t43 is
4

a limiting case. The goal of this section is to explain exactly

what happens in that case. First, let us introduce some notations

by Proposition V.I, we know there exists M such that, for everyo

X < 0 , the equation

+3 3
(49) - Au. = 47(u,+X) a.e. in R , u ) 0

has a umique radial solution u in H (having the properties listed

in Theorem V.I) and in addition we have for all X < 0

f (uX+X)+3dx - M

for some M > 0 , independent of X .0

Then, we have the following result for the corresponding minimi-

zation problem :

FROPOSITION V. 5. Let M > 0

i) if M < M , then for every p in LI(fR3) n L4/3R 3) such that
0

110 11L, < M , we have

.R IP4/ x - I P(x)P(y) dxdy > 0

&(P) f3  " k 1 x- f at334 23 I3)w3 1x--Y

md F(p) = 0 impZies p E 0 .

1i) M - M , then fPr every p in LI(R3 ) n L4/3(& 3) suoh 'hat

m1 . M, b.3 zy &(p) > and &(p) - 0 if and ony if p - 0

r o(x) - (u,+A)+3(x-x) , for some x in fR 3md .,1r soc ) 0
0 0
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iii) if m > H , then & is unbounded below on the set

{p E L n L4/3 , lip 11L1 < M}

In other words the minimization problem has no solution for M M 00

and for M = M its solutions are exactly (up to a translation)
0

p() (uX+A) +  • We will see in the proof below that H0  (2C1
3 /

(C1  is given by (5')).

Proof of Proposition V.5. Let M, - ) . Obviously if M M

we have &(p) > 0 , for p in L n L 4/ 3  lip 11Lt 1 H

On the other hand a simple argument proves that for M > M!

is unbounded below on {P E LnL4/ 3 , lip II L 4 M}
L 1 4/

Now let us assume that 9(p) - 0 for some p in L1  L

lip II 4 M .• Since, by well-known results, 8(p )< &(p ) except if
L

* 3 *

p(x) p *(x-x o) (for some x in IR 3) - where as above p denotes the

spherical decreasing rearrangement of p - we deduce that (up to a

translation) p = p Now, if lip 1i < M . we get (setting p0 W = -

d 9(p )J =3 f 4/ dx- 52- p(x)p(y)lx-yl-ldxdy
da a G=+1 3 -5 f I XJF3

= f - R .F3 X 3 p(x)p(y)lIx-yl 1dxdy

Then if p 0, this would imply 9(p) < 0 , for some p in L' n L

with lip 1lLl < M1  and this is impossible.

Next, if 11p 11 L , p satisfies the following Euler equation

-u 4ru +3 a3.in *J - Au = 4Tr(u+A) a.e. in R , u G H , u = u > 0 , A E

p (u+) 3 E L1 n L4 /
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This impliep easily X< 0 And applying Pohozaev identity (see

[ 121) we ,ur in

(50) 0 < Vud = 6 fR3(u+X)+4 dx = 4 u(u+X)+3 dx

therefore X < 0 . And this implies : u - u , P - (u,+X)

To conclude the proof of the proposition, we just need to recall

the result proved in [6 ]: for M = MI , there exists P satisfying

-(P) = 0 , p E L' n L4 / 3  and li PilL I = M I Thus M1 M M And it

just remains to check that for all X < 0

+3
?-(pX) = 0 , where PX= (uX+X)

But in view of (50) , we have

6 j 4/ p' dx = 4 j~ xu,(x)dx - 4 R3 -P() ()IYdxdy

and this gives the desired equality.
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